In vitro and in vivo functional residual capacity comparisons between multiple-breath nitrogen washout devices
نویسندگان
چکیده
Functional residual capacity (FRC) accuracy is essential for deriving multiple-breath nitrogen washout (MBNW) indices, and is the basis for device validation. Few studies have compared existing MBNW devices. We evaluated in vitro and in vivo FRC using two commercial MBNW devices, the Exhalyzer D (EM) and the EasyOne Pro LAB (ndd), and an in-house device (Woolcock in-house device, WIMR). FRC measurements were performed using a novel syringe-based lung model and in adults (20 healthy and nine with asthma), followed by plethysmography (FRCpleth). The data were analysed using device-specific software. Following the results seen with ndd, we also compared its standard clinical software (ndd v.2.00) with a recent upgrade (ndd v.2.01). WIMR and EM fulfilled formal in vitro FRC validation recommendations (>95% of FRC within 5% of known volume). Ndd v.2.00 underestimated in vitro FRC by >20%. Reanalysis using ndd v.2.01 reduced this to 11%, with 36% of measurements ≤5%. In vivo differences from FRCpleth (mean±sd) were 4.4±13.1%, 3.3±11.8%, -20.6±11% (p<0.0001) and -10.5±10.9% (p=0.005) using WIMR, EM, ndd v.2.00 and ndd v.2.01, respectively. Direct device comparison highlighted important differences in measurement accuracy. FRC discrepancies between devices were larger in vivo, compared to in vitro results; however, the pattern of difference was similar. These results represent progress in ongoing standardisation efforts.
منابع مشابه
Defining the appropriate waiting time between multiple-breath nitrogen washout measurements.
Static lung volume measurements allow objective assessment of total lung capacity (TLC), functional residual capacity (FRC) and residual volume, and assist in the diagnosis and management of lung disease [1, 2]. The use of gas dilution techniques, such as multiple-breath nitrogen washout (MBNW), require minimal patient cooperation and allow FRC to be determined in those individuals unable to co...
متن کاملMoment ratio analysis of multiple breath nitrogen washout in infants with lung disease.
Measurement of lung volumes at end expiratory level and assessment of ventilation inhomogeneity is important for respiratory management in infants with lung disease. This study compared multiple breath nitrogen washout was compared with body plethysmography to measure functional residual capacity in infants and assessed ventilation inhomogeneity using mean dilution numbers and alveolar based ga...
متن کاملMeasurement of functional residual capacity by modified multiple breath nitrogen washout for spontaneously breathing and mechanically ventilated patients.
BACKGROUND There is a need for a bedside functional residual capacity (FRC) measurement method that performs well in intensive care patients during many modes of ventilation including controlled, assisted, spontaneous, and mixed. We developed a modified multiple breath nitrogen washout method for FRC measurement that relies on end-tidal gas fractions and alveolar tidal volume measurements as in...
متن کاملEvaluation of the Impact of Alveolar Nitrogen Excretion on Indices Derived from Multiple Breath Nitrogen Washout
BACKGROUND A large body of evidence has now accumulated describing the advantages of multiple breath washout tests over conventional spirometry in cystic fibrosis (CF). Although the majority of studies have used exogenous sulphur hexafluoride (SF6) as the tracer gas this has also led to an increased interest in nitrogen washout tests, despite the differences between these methods. The impact of...
متن کاملMultiple-breath nitrogen washout techniques: including measurements with patients on ventilators.
Definition ....................................................................... Methods for determining FRC ................................... Choice of method FRC measured by plethysmography (FRCpleth) ......... FRC measured by helium dilution (FRCHe) ............. FRC measured by nitrogen washout (FRCN2) ........... Standards for lung volume measurement by gas dilution/washout techniques ...
متن کامل